Revista INNDEV. ISSN 2773-7640. Abril - Julio 2025. Vol. 4, Núm 1, P. 14 - 28.
https://doi.org/10.69583/inndev.v4n1.2025.153
REFERENCIAS BIBLIOGRÁFICAS
Abioye, E. A., Abidin, M. S. Z., Mahmud, M. S. A., Buyamin, S., Ishak, M. H. I., Rahman, M. K. I.
A., ... & Ramli, M. S. A. (2023). IoT-based monitoring and data-driven modelling of drip
irrigation system for mustard leaf cultivation experiment. Information Processing in
Agriculture, 10(2), 270-283.
An, J., Li, W., Li, M., Cui, S., & Yue, H. (2019). Identification and classification of maize drought
stress using deep convolutional neural network. Symmetry, 11(2), 256.
Bwambale, E., Abagale, F. K., & Anornu, G. K. (2020). Smart irrigation monitoring and control
strategies for improving water use efficiency in precision agriculture: A review. Chemical
Engineering Transactions, 82, 369-374.
Hassanpour, B., Yazdandoost, F., & Ramezani, Y. (2020). Evaluation of OPTRAM implementation
on Sentinel-2 data for soil moisture mapping at field scale. Computers and Electronics in
Agriculture, 178, 105746.
Kamienski, C., Soininen, J. P., Taumberger, M., Dantas, R., Toscano, A., Cinotti, T. S., ... &
Kozlovski, E. (2019). Smart water management platform: IoT-based precision irrigation for
agriculture. Sensors, 19(2), 276.
Kangogo, D., Dentoni, D., & Bijman, J. (2022). Prediction of arabica coffee production using
artificial neural network and multiple linear regression techniques. Scientific Reports, 12(1),
9729.
Molin, J. P., Colaço, A. F., & Amaral, L. R. (2022). The role of machine learning on Arabica coffee
crop yield based on remote sensing and mineral nutrition monitoring. Biosystems
Engineering, 221, 81-104.
Montaguano, J. A. (2024). Implementación de un sistema de monitoreo medioambiental mediante
sensores inalámbricos y tecnologías IoT para el centro experimental Sacha Wiwa [Tesis de
maestría, Universidad Estatal Península de Santa Elena]. Repositorio UPSE.
Monteiro, A., Santos, S., & Gonçalves, P. (2021). Precision agriculture for crop and livestock
farming—Brief review. Animals, 11(8), 2345.
Ohana-Levi, N., Munitz, S., Ben-Gal, A., Schwartz, A., Peeters, A., & Netzer, Y. (2024). A spatial
machine-learning model for predicting crop water stress index for precision irrigation of
vineyards. Computers and Electronics in Agriculture, 217, 108621.
Sankararao, A. U., Ramalinga Reddy, M., Kiran Kumar, B., Raghavendra, S., & Leela Rani, K.
(2021). Identification of water stress in pearl millet crop using UAV based hyperspectral
remote sensing. Geocarto International, 38(1), 2208816.
Singh, A. K., Ganapathysubramanian, B., Sarkar, S., & Singh, A. (2018). Deep learning for plant
stress phenotyping: trends and future perspectives. Trends in Plant Science, 23(10), 883-898.
Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision
agriculture: A review. Remote Sensing, 12(19), 3136.
Sitienei, I., Kamau, D. M., & Ndakidemi, P. A. (2017). Artificial intelligence approach for the
prediction of Robusta coffee yield using soil fertility properties. Computers and Electronics in
Agriculture, 155, 324-333.
Zhuang, S., Wang, P., Jiang, B., Li, M., & Gong, Z. (2020). Early detection of water stress in maize
based on digital images. Computers and Electronics in Agriculture, 178, 105746.